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Département de mathématiques et de statistique

Pavillon Alexandre-Vachon
Université Laval
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Abstract

In several reliability applications, a model for the distribution of lifetime given a realized (or
forecast) usage history is necessary. Such examples include the choice of a time scale, the calcu-
lation of warranty prices or the extrapolation of an accelerated life test. There is a vast array of
approaches proposed to model the relationship between lifetime and usage in the literature, be
it through hazard function or internal wear modelling, or through time scale changes. This talk
surveys some of these methods and outlines some of their main features, such as related inference
procedures, probabilistic interpretation, applicability to certain problems, and so on.

1 Introduction

Let T be the random variable of time to failure of an item and let θt = {θ(u), 0 ≤ u ≤ t} represent the usage
history up to time t for this item, where θ(u) represents the usage rate of the item at time u. Define the
cumulative usage at time t as y(t) =

∫ t

0
θ(u)du. For example, the item could be a car, T could be its failure

time, θ(t) its speed at time t, y(t) its cumulative mileage at time t and θt its mileage accumulation history
from time 0 up to time t.

Suppose that for a fleet of n independent items, we dispose of the following information: (ti, δi, {θi(u), 0 ≤
u ≤ ti}), i = 1, . . . , n, where ti is a failure or right-censoring time, δi is an indicator that ti is a failure time
and θi(u) is the usage rate of item i at time u. Our purpose in this paper is to use such data to infer about
the distribution of lifetime, T , given the usage history, θt. In most situations, a regression model for the
effect of usage on lifetime is postulated. Most regression models specify certain aspects of the relationship
between lifetime and usage and leave unspecified some parts of this relationship (finite or infinite dimensional
parameters), which are to be estimated from data. In this paper we consider several approaches to this
regression problem and outline some of their properties.

2 Most common modelling approaches

Some approaches to modelling the effect of usage on lifetime are well known and have been well documented.
Let Θt denote the space of all possible usage accumulation histories between times 0 and t.

2.1 Proportional hazards model

Perhaps the best known model in lifetime regression, it assumes that the effect of usage accumulation on
lifetime acts multiplicatively on the hazard of failure at time t:

h(t|θt) = h0(t)ψ(θt;β), (1)

where h0(t) is a baseline hazard rate, usually left arbitrary, and ψ : Θt → IR maps the usage history up to
time t to its multiplicative effect on the hazard and usually depends on a finite dimensional parameter β.
Banjevic et al. (2001) use this model with ψ(θt; β) = exp{βθ(t)} to optimize condition-based maintenance.



2.2 Additive hazards model
Frequently used in reliability to model the hazard of an event at time t given a realization of a stochastic
process:

h(t|θt) = h0(t) + ψ(θt; β),

where ψ(·) is as in (1). Singpurwalla and Wilson (1993, 1998) use this model with ψ(θt; β) = βy(t) for
two-dimensional warranty calculations. Cox (1999) derives some properties of this model.

2.3 Accelerated failure time model
Though its version with time-fixed covariates is better known, this model is also well defined for time-varying
covariates:

P [T > t|θt] = G

(∫ t

0

ψ(θu; β)du

)
, (2)

where G(·) is a survivor function. Properties and semiparametric inference for this model are discussed
by Robins and Tsiatis (1992). Lawless et al. (1995) use the time-fixed covariate version to analyze two-
dimensional automobile warranty data.

3 Other modelling approaches

The models of this section are perhaps not as well known as the models from Section 2, but they are
nonetheless quite interesting and deserve, in the author’s opinion, further consideration.

3.1 Ideal time scales
Duchesne and Lawless (2000) define an ideal time scale (ITS) as a functional φ(t,θt) such that

P [T > t|θt] = G[φ(t,θt)],

where G(·) is a survivor function that does not depend on θt. Other authors have referred to such time
transformations as intrinsic scale (Çinlar and Ozekici, 1987), load invariant scale (Kordonsky and Gertsbakh,
1997) or virtual age (Finkelstein, 1999) and is in close correspondence with the concepts of transfer functional
and resource of Bagdonavičius and Nikulin (1997).

3.2 General models of Bagdonavičius and Nikulin (1997)
Bagdonavičius and Nikulin (1997) propose various classes of general models that include the proportional
hazards, additive hazards, accelerated failure time and other time scale change models. They obtain their
classes of models by defining a transfer functional, fθt(t), which is closely related to an ITS, via differential
equations. They derive inference methods and outline goodness-of-fit procedures for such models.

3.3 Stochastic internal wear and failure rate
Singpurwalla (1995) models the reliability of items by assuming that their internal wear (degradation, system
state, health level, etc.) and/or the hazard of failure are stochastic processes influenced by the environment
where the items live. If we let {X(t), t ≥ 0} represent the value of the internal wear of an item and X∗ be the
(perhaps random) failure threshold, then time to failure can be defined as T = inf{t : X(t) ≥ X∗}. Though
there is a vast literature on models for T based on models for {X(t)} and on the modelling of internal wear
or degradation as a function of covariates (Meeker and Escobar, 1998, chapter 21), few articles seem to unify
both concepts to model reliability as a function of the usage history.

Bagdonavičius and Nikulin (2001) do unify degradation and regression models for this purpose. They
let the time index of the process {X(t)} depend on θt. More precisely, they consider a gamma diffusion
model for {X(t)} under a “baseline” usage θ∗, and the effect of a different usage θ is modelled by altering
the value of the time index t by using t∗ =

∫ t

0
exp{βθ(u)}du instead. This can be viewed as an application

of the accelerated failure time model (2) to model the effect of usage on the degradation of items. Note that
if we consider usage as a stochastic process, then this is an interesting example of a subordinated stochastic
process. Lee and Whitmore (1993) discuss properties of these processes of the form X(T (t)), in the case



where {X(t)} is a continuous and stationary Markov process and {T (t)} is a process with non-negative
and independent increments. Hougaard et al. (1997) combine a Poisson and a Hougaard process in this
manner to analyze epileptic seizure data; random time can be viewed as within patient variability and thus
an approach based on subordinated processes can be useful for situations where overdispersion is present.
And clearly, from Bagdonavičius and Nikulin (2001), subordinated processes have the potential to be useful
in developing models and methods for regression of lifetime given usage.

Singpurwalla (1995), Cox (1999) and Bagdonavičius and Nikulin (2001) model the effect of covariates
such as the usage rate on failure not only through the value of the internal wear process {X(t)}, but also
by modelling the effect of θt on the distribution of the failure threshold, X∗, or equivalently on the hazard
that a traumatic event that may kill the item occurs.

4 Collapsible models

This class of models is little known but can potentially be useful in modelling the distribution of lifetime
given a usage history. A regression model is said to be collapsible when

P [T > t|θt] = G[φ(t, y(t); β)],

where φ(·, ·; β) : IR2 → IR is a positive map and G(·) is a survivor function. Oakes (1995) introduced these
models and used the model with a linear scale φ(t, y(t); β) = t + βy(t) to model the lifetime of miners given
their history of exposure to asbestos dust.

4.1 Statistical inference
Oakes (1995), Kordonsky and Gertsbakh (1997), Duchesne (2000) and Duchesne and Lawless (2000) discuss
maximum likelihood based inference methods for this model when the survivor function G(·) is specified
parametrically. In the semiparametric case (i.e., φ(·, ·; β) parametric but G(·) arbitrary), Kordonsky and
Gertsbakh (1997) derive inference methods based on the coefficient of variability of the age in the ITS while
Duchesne and Lawless (2002) propose a method based on ranks (counting processes). In the nonparametric
case (i.e., both φ(·, ·) and G(·) arbitrary), Duchesne (2000) proposes an ad hoc method to estimate the level
curves Ct = {(x, y) : φ(x, y)] = t} (see Figure 1). The points on such an age curve correspond to the same
quantile of P [T > t|θt].
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Figure 1: Example of age curves from a collapsible model with a linear ideal time scale φ(x, y(x)) = x+βy(x).

4.2 Stochastic justification of the model
Duchesne and Rosenthal (2003) consider the dynamic environment setup of Singpurwalla (1995), Cox (1999)
and Bagdonavičius and Nikulin (2001). Assuming that the internal wear follows a diffusion process whose
drift depends on the usage history, they obtain collapsible models under certain conditions. They also
consider cases with traumatic events whose rate of occurrence depends on usage.

4.3 Potential for applications
Collapsible models have been used to model the reliability of several items, such as aircraft or steel specimens
(Kordonsky and Gertsbakh, 1997). They are also useful for preventive maintenance decisions in two dimen-



sions, as investigated by Frickenstein and Whitaker (2003). Moreover, the age curves of Figure 1 suggest
a shape for what could be viewed as “fair” warranty regions. Note that if lifetime given usage followed
a collapsible model in a case where the warranty region is parallel to the age curves, then warranty cost
calculations and inference from warranty data could be much simplified.
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Council of Canada and of the Fonds québécois de la recherche sur la nature et les technologies.

References
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